Papers
Topics
Authors
Recent
2000 character limit reached

CAMBench-QR : A Structure-Aware Benchmark for Post-Hoc Explanations with QR Understanding (2509.16745v1)

Published 20 Sep 2025 in cs.CV and cs.AI

Abstract: Visual explanations are often plausible but not structurally faithful. We introduce CAMBench-QR, a structure-aware benchmark that leverages the canonical geometry of QR codes (finder patterns, timing lines, module grid) to test whether CAM methods place saliency on requisite substructures while avoiding background. CAMBench-QR synthesizes QR/non-QR data with exact masks and controlled distortions, and reports structure-aware metrics (Finder/Timing Mass Ratios, Background Leakage, coverage AUCs, Distance-to-Structure) alongside causal occlusion, insertion/deletion faithfulness, robustness, and latency. We benchmark representative, efficient CAMs (LayerCAM, EigenGrad-CAM, XGrad-CAM) under two practical regimes of zero-shot and last-block fine-tuning. The benchmark, metrics, and training recipes provide a simple, reproducible yardstick for structure-aware evaluation of visual explanations. Hence we propose that CAMBENCH-QR can be used as a litmus test of whether visual explanations are truly structure-aware.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.