A Hybrid PCA-PR-Seq2Seq-Adam-LSTM Framework for Time-Series Power Outage Prediction (2509.16743v1)
Abstract: Accurately forecasting power outages is a complex task influenced by diverse factors such as weather conditions [1], vegetation, wildlife, and load fluctuations. These factors introduce substantial variability and noise into outage data, making reliable prediction challenging. Long Short-Term Memory (LSTM) networks, a type of Recurrent Neural Network (RNN), are particularly effective for modeling nonlinear and dynamic time-series data, with proven applications in stock price forecasting [2], energy demand prediction, demand response [3], and traffic flow management [4]. This paper introduces a hybrid deep learning framework, termed PCA-PR-Seq2Seq-Adam-LSTM, that integrates Principal Component Analysis (PCA), Poisson Regression (PR), a Sequence-to-Sequence (Seq2Seq) architecture, and an Adam-optimized LSTM. PCA is employed to reduce dimensionality and stabilize data variance, while Poisson Regression effectively models discrete outage events. The Seq2Seq-Adam-LSTM component enhances temporal feature learning through efficient gradient optimization and long-term dependency capture. The framework is evaluated using real-world outage records from Michigan, and results indicate that the proposed approach significantly improves forecasting accuracy and robustness compared to existing methods.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.