Papers
Topics
Authors
Recent
2000 character limit reached

Causality-Induced Positional Encoding for Transformer-Based Representation Learning of Non-Sequential Features (2509.16629v1)

Published 20 Sep 2025 in cs.LG and q-bio.QM

Abstract: Positional encoding is essential for supplementing transformer with positional information of tokens. Existing positional encoding methods demand predefined token/feature order, rendering them unsuitable for real-world data with non-sequential yet causally-related features. To address this limitation, we propose CAPE, a novel method that identifies underlying causal structure over non-sequential features as a weighted directed acyclic graph (DAG) using generalized structural equation modeling. The DAG is then embedded in hyperbolic space where its geometric structure is well-preserved using a hyperboloid model-based approach that effectively captures two important causal graph properties (causal strength & causal specificity). This step yields causality-aware positional encodings for the features, which are converted into their rotary form for integrating with transformer's self-attention mechanism. Theoretical analysis reveals that CAPE-generated rotary positional encodings possess three valuable properties for enhanced self-attention, including causal distance-induced attenuation, causal generality-induced attenuation, and robustness to positional disturbances. We evaluate CAPE over both synthetic and real-word datasets, empirically demonstrating its theoretical properties and effectiveness in enhancing transformer for data with non-sequential features. Our code is available at https://github.com/Catchxu/CAPE.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 0 likes about this paper.