Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 93 tok/s
Gemini 3.0 Pro 48 tok/s
Gemini 2.5 Flash 165 tok/s Pro
Kimi K2 201 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Mental Multi-class Classification on Social Media: Benchmarking Transformer Architectures against LSTM Models (2509.16542v1)

Published 20 Sep 2025 in cs.CL, cs.IR, and cs.LG

Abstract: Millions of people openly share mental health struggles on social media, providing rich data for early detection of conditions such as depression, bipolar disorder, etc. However, most prior NLP research has focused on single-disorder identification, leaving a gap in understanding the efficacy of advanced NLP techniques for distinguishing among multiple mental health conditions. In this work, we present a large-scale comparative study of state-of-the-art transformer versus Long Short-Term Memory (LSTM)-based models to classify mental health posts into exclusive categories of mental health conditions. We first curate a large dataset of Reddit posts spanning six mental health conditions and a control group, using rigorous filtering and statistical exploratory analysis to ensure annotation quality. We then evaluate five transformer architectures (BERT, RoBERTa, DistilBERT, ALBERT, and ELECTRA) against several LSTM variants (with or without attention, using contextual or static embeddings) under identical conditions. Experimental results show that transformer models consistently outperform the alternatives, with RoBERTa achieving 91-99% F1-scores and accuracies across all classes. Notably, attention-augmented LSTMs with BERT embeddings approach transformer performance (up to 97% F1-score) while training 2-3.5 times faster, whereas LSTMs using static embeddings fail to learn useful signals. These findings represent the first comprehensive benchmark for multi-class mental health detection, offering practical guidance on model selection and highlighting an accuracy-efficiency trade-off for real-world deployment of mental health NLP systems.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.