Papers
Topics
Authors
Recent
2000 character limit reached

AIPsychoBench: Understanding the Psychometric Differences between LLMs and Humans (2509.16530v1)

Published 20 Sep 2025 in cs.CL and cs.AI

Abstract: LLMs with hundreds of billions of parameters have exhibited human-like intelligence by learning from vast amounts of internet-scale data. However, the uninterpretability of large-scale neural networks raises concerns about the reliability of LLM. Studies have attempted to assess the psychometric properties of LLMs by borrowing concepts from human psychology to enhance their interpretability, but they fail to account for the fundamental differences between LLMs and humans. This results in high rejection rates when human scales are reused directly. Furthermore, these scales do not support the measurement of LLM psychological property variations in different languages. This paper introduces AIPsychoBench, a specialized benchmark tailored to assess the psychological properties of LLM. It uses a lightweight role-playing prompt to bypass LLM alignment, improving the average effective response rate from 70.12% to 90.40%. Meanwhile, the average biases are only 3.3% (positive) and 2.1% (negative), which are significantly lower than the biases of 9.8% and 6.9%, respectively, caused by traditional jailbreak prompts. Furthermore, among the total of 112 psychometric subcategories, the score deviations for seven languages compared to English ranged from 5% to 20.2% in 43 subcategories, providing the first comprehensive evidence of the linguistic impact on the psychometrics of LLM.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.