Papers
Topics
Authors
Recent
2000 character limit reached

Agentic Reasoning for Robust Vision Systems via Increased Test-Time Compute (2509.16343v1)

Published 19 Sep 2025 in cs.CV, cs.AI, and cs.MA

Abstract: Developing trustworthy intelligent vision systems for high-stakes domains, \emph{e.g.}, remote sensing and medical diagnosis, demands broad robustness without costly retraining. We propose \textbf{Visual Reasoning Agent (VRA)}, a training-free, agentic reasoning framework that wraps off-the-shelf vision-LLMs \emph{and} pure vision systems in a \emph{Think--Critique--Act} loop. While VRA incurs significant additional test-time computation, it achieves up to 40\% absolute accuracy gains on challenging visual reasoning benchmarks. Future work will optimize query routing and early stopping to reduce inference overhead while preserving reliability in vision tasks.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.