Papers
Topics
Authors
Recent
2000 character limit reached

Similarity-Guided Diffusion for Long-Gap Music Inpainting (2509.16342v1)

Published 19 Sep 2025 in eess.AS, cs.LG, and cs.SD

Abstract: Music inpainting aims to reconstruct missing segments of a corrupted recording. While diffusion-based generative models improve reconstruction for medium-length gaps, they often struggle to preserve musical plausibility over multi-second gaps. We introduce Similarity-Guided Diffusion Posterior Sampling (SimDPS), a hybrid method that combines diffusion-based inference with similarity search. Candidate segments are first retrieved from a corpus based on contextual similarity, then incorporated into a modified likelihood that guides the diffusion process toward contextually consistent reconstructions. Subjective evaluation on piano music inpainting with 2-s gaps shows that the proposed SimDPS method enhances perceptual plausibility compared to unguided diffusion and frequently outperforms similarity search alone when moderately similar candidates are available. These results demonstrate the potential of a hybrid similarity approach for diffusion-based audio enhancement with long gaps.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.