Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

The Role of High-Performance GPU Resources in Large Language Model Based Radiology Imaging Diagnosis (2509.16328v1)

Published 19 Sep 2025 in q-bio.TO

Abstract: Large-LLMs are rapidly being applied to radiology, enabling automated image interpretation and report generation tasks. Their deployment in clinical practice requires both high diagnostic accuracy and low inference latency, which in turn demands powerful hardware. High-performance graphical processing units (GPUs) provide the necessary compute and memory throughput to run large LLMs on imaging data. We review modern GPU architectures (e.g. NVIDIA A100/H100, AMD Instinct MI250X/MI300) and key performance metrics of floating-point throughput, memory bandwidth, VRAM capacity. We show how these hardware capabilities affect radiology tasks: for example, generating reports or detecting findings on CheXpert and MIMIC-CXR images is computationally intensive and benefits from GPU parallelism and tensor-core acceleration. Empirical studies indicate that using appropriate GPU resources can reduce inference time and improve throughput. We discuss practical challenges including privacy, deployment, cost, power and optimization strategies: mixed-precision, quantization, compression, and multi-GPU scaling. Finally, we anticipate that next-generation features (8-bit tensor cores, enhanced interconnect) will further enable on-premise and federated radiology AI. Advancing GPU infrastructure is essential for safe, efficient LLM-based radiology diagnostics.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube