Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 453 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

PRISM: Probabilistic and Robust Inverse Solver with Measurement-Conditioned Diffusion Prior for Blind Inverse Problems (2509.16106v1)

Published 19 Sep 2025 in eess.IV, cs.CV, and cs.LG

Abstract: Diffusion models are now commonly used to solve inverse problems in computational imaging. However, most diffusion-based inverse solvers require complete knowledge of the forward operator to be used. In this work, we introduce a novel probabilistic and robust inverse solver with measurement-conditioned diffusion prior (PRISM) to effectively address blind inverse problems. PRISM offers a technical advancement over current methods by incorporating a powerful measurement-conditioned diffusion model into a theoretically principled posterior sampling scheme. Experiments on blind image deblurring validate the effectiveness of the proposed method, demonstrating the superior performance of PRISM over state-of-the-art baselines in both image and blur kernel recovery.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.