Papers
Topics
Authors
Recent
2000 character limit reached

CoPAD : Multi-source Trajectory Fusion and Cooperative Trajectory Prediction with Anchor-oriented Decoder in V2X Scenarios (2509.15984v1)

Published 19 Sep 2025 in cs.CV, cs.MA, and cs.RO

Abstract: Recently, data-driven trajectory prediction methods have achieved remarkable results, significantly advancing the development of autonomous driving. However, the instability of single-vehicle perception introduces certain limitations to trajectory prediction. In this paper, a novel lightweight framework for cooperative trajectory prediction, CoPAD, is proposed. This framework incorporates a fusion module based on the Hungarian algorithm and Kalman filtering, along with the Past Time Attention (PTA) module, mode attention module and anchor-oriented decoder (AoD). It effectively performs early fusion on multi-source trajectory data from vehicles and road infrastructure, enabling the trajectories with high completeness and accuracy. The PTA module can efficiently capture potential interaction information among historical trajectories, and the mode attention module is proposed to enrich the diversity of predictions. Additionally, the decoder based on sparse anchors is designed to generate the final complete trajectories. Extensive experiments show that CoPAD achieves the state-of-the-art performance on the DAIR-V2X-Seq dataset, validating the effectiveness of the model in cooperative trajectory prediction in V2X scenarios.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.