Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Comparative Study of Rule-Based and Data-Driven Approaches in Industrial Monitoring

Published 19 Sep 2025 in cs.AI | (2509.15848v1)

Abstract: Industrial monitoring systems, especially when deployed in Industry 4.0 environments, are experiencing a shift in paradigm from traditional rule-based architectures to data-driven approaches leveraging machine learning and artificial intelligence. This study presents a comparison between these two methodologies, analyzing their respective strengths, limitations, and application scenarios, and proposes a basic framework to evaluate their key properties. Rule-based systems offer high interpretability, deterministic behavior, and ease of implementation in stable environments, making them ideal for regulated industries and safety-critical applications. However, they face challenges with scalability, adaptability, and performance in complex or evolving contexts. Conversely, data-driven systems excel in detecting hidden anomalies, enabling predictive maintenance and dynamic adaptation to new conditions. Despite their high accuracy, these models face challenges related to data availability, explainability, and integration complexity. The paper suggests hybrid solutions as a possible promising direction, combining the transparency of rule-based logic with the analytical power of machine learning. Our hypothesis is that the future of industrial monitoring lies in intelligent, synergic systems that leverage both expert knowledge and data-driven insights. This dual approach enhances resilience, operational efficiency, and trust, paving the way for smarter and more flexible industrial environments.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.