Generalization and Optimization of SGD with Lookahead (2509.15776v1)
Abstract: The Lookahead optimizer enhances deep learning models by employing a dual-weight update mechanism, which has been shown to improve the performance of underlying optimizers such as SGD. However, most theoretical studies focus on its convergence on training data, leaving its generalization capabilities less understood. Existing generalization analyses are often limited by restrictive assumptions, such as requiring the loss function to be globally Lipschitz continuous, and their bounds do not fully capture the relationship between optimization and generalization. In this paper, we address these issues by conducting a rigorous stability and generalization analysis of the Lookahead optimizer with minibatch SGD. We leverage on-average model stability to derive generalization bounds for both convex and strongly convex problems without the restrictive Lipschitzness assumption. Our analysis demonstrates a linear speedup with respect to the batch size in the convex setting.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.