Once Upon a Time: Interactive Learning for Storytelling with Small Language Models (2509.15714v1)
Abstract: Children efficiently acquire language not just by listening, but by interacting with others in their social environment. Conversely, LLMs are typically trained with next-word prediction on massive amounts of text. Motivated by this contrast, we investigate whether LLMs can be trained with less data by learning not only from next-word prediction but also from high-level, cognitively inspired feedback. We train a student model to generate stories, which a teacher model rates on readability, narrative coherence, and creativity. By varying the amount of pretraining before the feedback loop, we assess the impact of this interactive learning on formal and functional linguistic competence. We find that the high-level feedback is highly data efficient: With just 1 M words of input in interactive learning, storytelling skills can improve as much as with 410 M words of next-word prediction.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.