Training-Free Pyramid Token Pruning for Efficient Large Vision-Language Models via Region, Token, and Instruction-Guided Importance (2509.15704v1)
Abstract: Large Vision-LLMs (LVLMs) have significantly advanced multimodal understanding but still struggle with efficiently processing high-resolution images. Recent approaches partition high-resolution images into multiple sub-images, dramatically increasing the number of visual tokens and causing exponential computational overhead during inference. To address these limitations, we propose a training-free token pruning strategy, Pyramid Token Pruning (PTP), that integrates bottom-up visual saliency at both region and token levels with top-down instruction-guided importance. Inspired by human visual attention mechanisms, PTP selectively retains more tokens from visually salient regions and further leverages textual instructions to pinpoint tokens most relevant to specific multimodal tasks. Extensive experiments across 13 diverse benchmarks demonstrate that our method substantially reduces computational overhead and inference latency with minimal performance loss.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.