Papers
Topics
Authors
Recent
2000 character limit reached

Multilingual LLM Prompting Strategies for Medical English-Vietnamese Machine Translation (2509.15640v1)

Published 19 Sep 2025 in cs.CL

Abstract: Medical English-Vietnamese machine translation (En-Vi MT) is essential for healthcare access and communication in Vietnam, yet Vietnamese remains a low-resource and under-studied language. We systematically evaluate prompting strategies for six multilingual LLMs (0.5B-9B parameters) on the MedEV dataset, comparing zero-shot, few-shot, and dictionary-augmented prompting with Meddict, an English-Vietnamese medical lexicon. Results show that model scale is the primary driver of performance: larger LLMs achieve strong zero-shot results, while few-shot prompting yields only marginal improvements. In contrast, terminology-aware cues and embedding-based example retrieval consistently improve domain-specific translation. These findings underscore both the promise and the current limitations of multilingual LLMs for medical En-Vi MT.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.