Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 231 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4 33 tok/s Pro
2000 character limit reached

Subset Selection for Stratified Sampling in Online Controlled Experiments (2509.15576v1)

Published 19 Sep 2025 in stat.CO and stat.ML

Abstract: Online controlled experiments, also known as A/B testing, are the digital equivalent of randomized controlled trials for estimating the impact of marketing campaigns on website visitors. Stratified sampling is a traditional technique for variance reduction to improve the sensitivity (or statistical power) of controlled experiments; this technique first divides the population into strata (homogeneous subgroups) based on stratification variables and then draws samples from each stratum to avoid sampling bias. To enhance the estimation accuracy of stratified sampling, we focus on the problem of selecting a subset of stratification variables that are effective in variance reduction. We design an efficient algorithm that selects stratification variables one by one by simulating a series of stratified sampling processes. We also estimate the computational complexity of our subset selection algorithm. Computational experiments using synthetic and real-world datasets demonstrate that our method can outperform other variance reduction techniques especially when multiple variables have a certain correlation with the outcome variable. Our subset selection method for stratified sampling can improve the sensitivity of online controlled experiments, thus enabling more reliable marketing decisions.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube