LLM Cache Bandit Revisited: Addressing Query Heterogeneity for Cost-Effective LLM Inference (2509.15515v1)
Abstract: This paper revisits the LLM cache bandit problem, with a special focus on addressing the query heterogeneity for cost-effective LLM inference. Previous works often assume uniform query sizes. Heterogeneous query sizes introduce a combinatorial structure for cache selection, making the cache replacement process more computationally and statistically challenging. We treat optimal cache selection as a knapsack problem and employ an accumulation-based strategy to effectively balance computational overhead and cache updates. In theoretical analysis, we prove that the regret of our algorithm achieves an $O(\sqrt{MNT})$ bound, improving the coefficient of $\sqrt{MN}$ compared to the $O(MN\sqrt{T})$ result in Berkeley, where $N$ is the total number of queries and $M$ is the cache size. Additionally, we also provide a problem-dependent bound, which was absent in previous works. The experiment rely on real-world data show that our algorithm reduces the total cost by approximately 12\%.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.