Papers
Topics
Authors
Recent
2000 character limit reached

Deep learning and abstractive summarisation for radiological reports: an empirical study for adapting the PEGASUS models' family with scarce data

Published 18 Sep 2025 in cs.CL, cs.AI, and cs.LG | (2509.15419v1)

Abstract: Regardless of the rapid development of artificial intelligence, abstractive summarisation is still challenging for sensitive and data-restrictive domains like medicine. With the increasing number of imaging, the relevance of automated tools for complex medical text summarisation is expected to become highly relevant. In this paper, we investigated the adaptation via fine-tuning process of a non-domain-specific abstractive summarisation encoder-decoder model family, and gave insights to practitioners on how to avoid over- and underfitting. We used PEGASUS and PEGASUS-X, on a medium-sized radiological reports public dataset. For each model, we comprehensively evaluated two different checkpoints with varying sizes of the same training data. We monitored the models' performances with lexical and semantic metrics during the training history on the fixed-size validation set. PEGASUS exhibited different phases, which can be related to epoch-wise double-descent, or peak-drop-recovery behaviour. For PEGASUS-X, we found that using a larger checkpoint led to a performance detriment. This work highlights the challenges and risks of fine-tuning models with high expressivity when dealing with scarce training data, and lays the groundwork for future investigations into more robust fine-tuning strategies for summarisation models in specialised domains.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.