Generating Part-Based Global Explanations Via Correspondence (2509.15393v1)
Abstract: Deep learning models are notoriously opaque. Existing explanation methods often focus on localized visual explanations for individual images. Concept-based explanations, while offering global insights, require extensive annotations, incurring significant labeling cost. We propose an approach that leverages user-defined part labels from a limited set of images and efficiently transfers them to a larger dataset. This enables the generation of global symbolic explanations by aggregating part-based local explanations, ultimately providing human-understandable explanations for model decisions on a large scale.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.