Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 189 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Diagnostics of cognitive failures in multi-agent expert systems using dynamic evaluation protocols and subsequent mutation of the processing context (2509.15366v1)

Published 18 Sep 2025 in cs.AI

Abstract: The rapid evolution of neural architectures - from multilayer perceptrons to large-scale Transformer-based models - has enabled LLMs to exhibit emergent agentic behaviours when equipped with memory, planning, and external tool use. However, their inherent stochasticity and multi-step decision processes render classical evaluation methods inadequate for diagnosing agentic performance. This work introduces a diagnostic framework for expert systems that not only evaluates but also facilitates the transfer of expert behaviour into LLM-powered agents. The framework integrates (i) curated golden datasets of expert annotations, (ii) silver datasets generated through controlled behavioural mutation, and (iii) an LLM-based Agent Judge that scores and prescribes targeted improvements. These prescriptions are embedded into a vectorized recommendation map, allowing expert interventions to propagate as reusable improvement trajectories across multiple system instances. We demonstrate the framework on a multi-agent recruiter-assistant system, showing that it uncovers latent cognitive failures - such as biased phrasing, extraction drift, and tool misrouting - while simultaneously steering agents toward expert-level reasoning and style. The results establish a foundation for standardized, reproducible expert behaviour transfer in stochastic, tool-augmented LLM agents, moving beyond static evaluation to active expert system refinement.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.