Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Training thermodynamic computers by gradient descent (2509.15324v1)

Published 18 Sep 2025 in cond-mat.stat-mech and cs.LG

Abstract: We show how to adjust the parameters of a thermodynamic computer by gradient descent in order to perform a desired computation at a specified observation time. Within a digital simulation of a thermodynamic computer, training proceeds by maximizing the probability with which the computer would generate an idealized dynamical trajectory. The idealized trajectory is designed to reproduce the activations of a neural network trained to perform the desired computation. This teacher-student scheme results in a thermodynamic computer whose finite-time dynamics enacts a computation analogous to that of the neural network. The parameters identified in this way can be implemented in the hardware realization of the thermodynamic computer, which will perform the desired computation automatically, driven by thermal noise. We demonstrate the method on a standard image-classification task, and estimate the thermodynamic advantage -- the ratio of energy costs of the digital and thermodynamic implementations -- to exceed seven orders of magnitude. Our results establish gradient descent as a viable training method for thermodynamic computing, enabling application of the core methodology of machine learning to this emerging field.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.