Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 62 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 78 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 423 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Subject Matter Expertise vs Professional Management in Collective Sequential Decision Making (2509.15263v1)

Published 18 Sep 2025 in cs.HC and cs.LG

Abstract: Your company's CEO is retiring. You search for a successor. You can promote an employee from the company familiar with the company's operations, or recruit an external professional manager. Who should you prefer? It has not been clear how to address this question, the "subject matter expertise vs. professional manager debate", quantitatively and objectively. We note that a company's success depends on long sequences of interdependent decisions, with often-opposing recommendations of diverse board members. To model this task in a controlled environment, we utilize chess - a complex, sequential game with interdependent decisions which allows for quantitative analysis of performance and expertise (since the states, actions and game outcomes are well-defined). The availability of chess engines differing in style and expertise, allows scalable experimentation. We considered a team of (computer) chess players. At each turn, team members recommend a move and a manager chooses a recommendation. We compared the performance of two manager types. For manager as "subject matter expert", we used another (computer) chess player that assesses the recommendations of the team members based on its own chess expertise. We examined the performance of such managers at different strength levels. To model a "professional manager", we used Reinforcement Learning (RL) to train a network that identifies the board positions in which different team members have relative advantage, without any pretraining in chess. We further examined this network to see if any chess knowledge is acquired implicitly. We found that subject matter expertise beyond a minimal threshold does not significantly contribute to team synergy. Moreover, performance of a RL-trained "professional" manager significantly exceeds that of even the best "expert" managers, while acquiring only limited understanding of chess.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube