Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 189 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Comparative Analysis of Tokenization Algorithms for Low-Resource Language Dzongkha (2509.15255v1)

Published 18 Sep 2025 in cs.CL

Abstract: LLMs are gaining popularity and improving rapidly. Tokenizers are crucial components of natural language processing, especially for LLMs. Tokenizers break down input text into tokens that models can easily process while ensuring the text is accurately represented, capturing its meaning and structure. Effective tokenizers enhance the capabilities of LLMs by improving a model's understanding of context and semantics, ultimately leading to better performance in various downstream tasks, such as translation, classification, sentiment analysis, and text generation. Most pre-trained tokenizers are suitable for high-resource languages like English but perform poorly for low-resource languages. Dzongkha, Bhutan's national language spoken by around seven hundred thousand people, is a low-resource language, and its linguistic complexity poses unique NLP challenges. Despite some progress, significant research in Dzongkha NLP is lacking, particularly in tokenization. This study evaluates the training and performance of three common tokenization algorithms in comparison to other popular methods. Specifically, Byte-Pair Encoding (BPE), WordPiece, and SentencePiece (Unigram) were evaluated for their suitability for Dzongkha. Performance was assessed using metrics like Subword Fertility, Proportion of Continued Words, Normalized Sequence Length, and execution time. The results show that while all three algorithms demonstrate potential, SentencePiece is the most effective for Dzongkha tokenization, paving the way for further NLP advancements. This underscores the need for tailored approaches for low-resource languages and ongoing research. In this study, we presented three tokenization algorithms for Dzongkha, paving the way for building Dzongkha LLMs.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.