Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Conditional Prior-based Non-stationary Channel Estimation Using Accelerated Diffusion Models (2509.15182v1)

Published 18 Sep 2025 in cs.DC

Abstract: Wireless channels in motion-rich urban microcell (UMi) settings are non-stationary; mobility and scatterer dynamics shift the distribution over time, degrading classical and deep estimators. This work proposes conditional prior diffusion for channel estimation, which learns a history-conditioned score to denoise noisy channel snapshots. A temporal encoder with cross-time attention compresses a short observation window into a context vector, which captures the channel's instantaneous coherence and steers the denoiser via feature-wise modulation. In inference, an SNR-matched initialization selects the diffusion step whose marginal aligns with the measured input SNR, and the process follows a shortened, geometrically spaced schedule, preserving the signal-to-noise trajectory with far fewer iterations. Temporal self-conditioning with the previous channel estimate and a training-only smoothness penalty further stabilizes evolution without biasing the test-time estimator. Evaluations on a 3GPP benchmark show lower NMSE across all SNRs than LMMSE, GMM, LSTM, and LDAMP baselines, demonstrating stable performance and strong high SNR fidelity.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.