A causality-based divide-and-conquer algorithm for nonequilibrium Green's function calculations with quantics tensor trains (2509.15028v1)
Abstract: We propose a causality-based divide-and-conquer algorithm for nonequilibrium Green's function calculations with quantics tensor trains. This algorithm enables stable and efficient extensions of the simulated time domain by exploiting the causality of Green's functions. We apply this approach within the framework of nonequilibrium dynamical mean-field theory to the simulation of quench dynamics in symmetry-broken phases, where long-time simulations are often required to capture slow relaxation dynamics. We demonstrate that our algorithm allows to extend the simulated time domain without a significant increase in the cost of storing the Green's function.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.