Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 34 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Indoor Fluid Antenna Systems Enabled by Layout-Specific Modeling and Group Relative Policy Optimization (2509.15006v1)

Published 18 Sep 2025 in cs.IT and math.IT

Abstract: The fluid antenna system (FAS) revolutionizes wireless communications by employing position-flexible antennas that dynamically optimize channel conditions and mitigate multipath fading. This innovation is particularly valuable in indoor environments, where signal propagation is severely degraded due to structural obstructions and complex multipath reflections. In this paper, we study the channel modeling and joint optimization of antenna positioning, beamforming, and power allocation for indoor FAS. In particular, we propose, for the first time, a layout-specific channel model and a novel group relative policy optimization (GRPO) algorithm for indoor FAS. Compared to the state-of-the-art Sionna model, our approach achieves an $83.3\%$ reduction in computation time with an approximately $3$ dB increase in root-mean-square error (RMSE). When simplified to a two-ray model, our channel model enables a closed-form solution for the optimal antenna position, achieving near-optimal performance. {For the joint optimization problem, the proposed GRPO algorithm outperforms proximal policy optimization (PPO) and other baselines in sum-rate, while requiring only 49.2\% computational resources of PPO, due to its group-based advantage estimation.} Simulation results reveal that increasing either the group size or trajectory length in GRPO does not yield significant improvements in sum-rate, suggesting that these parameters can be selected conservatively without sacrificing performance.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube