CollabVLA: Self-Reflective Vision-Language-Action Model Dreaming Together with Human (2509.14889v1)
Abstract: In this work, we present CollabVLA, a self-reflective vision-language-action framework that transforms a standard visuomotor policy into a collaborative assistant. CollabVLA tackles key limitations of prior VLAs, including domain overfitting, non-interpretable reasoning, and the high latency of auxiliary generative models, by integrating VLM-based reflective reasoning with diffusion-based action generation under a mixture-of-experts design. Through a two-stage training recipe of action grounding and reflection tuning, it supports explicit self-reflection and proactively solicits human guidance when confronted with uncertainty or repeated failure. It cuts normalized Time by ~2x and Dream counts by ~4x vs. generative agents, achieving higher success rates, improved interpretability, and balanced low latency compared with existing methods. This work takes a pioneering step toward shifting VLAs from opaque controllers to genuinely assistive agents capable of reasoning, acting, and collaborating with humans.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.