Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

LEAP: LLM Inference on Scalable PIM-NoC Architecture with Balanced Dataflow and Fine-Grained Parallelism (2509.14781v1)

Published 18 Sep 2025 in cs.AR

Abstract: LLM inference has been a prevalent demand in daily life and industries. The large tensor sizes and computing complexities in LLMs have brought challenges to memory, computing, and databus. This paper proposes a computation/memory/communication co-designed non-von Neumann accelerator by aggregating processing-in-memory (PIM) and computational network-on-chip (NoC), termed LEAP. The matrix multiplications in LLMs are assigned to PIM or NoC based on the data dynamicity to maximize data locality. Model partition and mapping are optimized by heuristic design space exploration. Dedicated fine-grained parallelism and tiling techniques enable high-throughput dataflow across the distributed resources in PIM and NoC. The architecture is evaluated on Llama 1B/8B/13B models and shows $\sim$2.55$\times$ throughput (tokens/sec) improvement and $\sim$71.94$\times$ energy efficiency (tokens/Joule) boost compared to the A100 GPU.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube