Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 188 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Edge-Aware Normalized Attention for Efficient and Detail-Preserving Single Image Super-Resolution (2509.14550v1)

Published 18 Sep 2025 in cs.CV

Abstract: Single-image super-resolution (SISR) remains highly ill-posed because recovering structurally faithful high-frequency content from a single low-resolution observation is ambiguous. Existing edge-aware methods often attach edge priors or attention branches onto increasingly complex backbones, yet ad hoc fusion frequently introduces redundancy, unstable optimization, or limited structural gains. We address this gap with an edge-guided attention mechanism that derives an adaptive modulation map from jointly encoded edge features and intermediate feature activations, then applies it to normalize and reweight responses, selectively amplifying structurally salient regions while suppressing spurious textures. In parallel, we integrate this mechanism into a lightweight residual design trained under a composite objective combining pixel-wise, perceptual, and adversarial terms to balance fidelity, perceptual realism, and training stability. Extensive experiments on standard SISR benchmarks demonstrate consistent improvements in structural sharpness and perceptual quality over SRGAN, ESRGAN, and prior edge-attention baselines at comparable model complexity. The proposed formulation provides (i) a parameter-efficient path to inject edge priors, (ii) stabilized adversarial refinement through a tailored multiterm loss, and (iii) enhanced edge fidelity without resorting to deeper or heavily overparameterized architectures. These results highlight the effectiveness of principled edge-conditioned modulation for advancing perceptual super-resolution.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: