Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Scalable Formula for the Moments of a Family of Self-Normalized Statistics (2509.14428v1)

Published 17 Sep 2025 in math.ST, stat.CO, and stat.TH

Abstract: Following the student t-statistic, normalization has been a widely used method in statistic and other disciplines including economics, ecology and machine learning. We focus on statistics taking the form of a ratio over (some power of) the sample mean, the probabilistic features of which remain unknown. We develop a unified formula for the moments of these self-normalized statistics with non-negative observations, yielding closed-form expressions for several important cases. Moreover, the complexity of our formula doesn't scale with the sample size $n$. Our theoretical findings, supported by extensive numerical experiments, reveal novel insights into their bias and variance, and we propose a debiasing method illustrated with applications such as the odds ratio, Gini coefficient and squared coefficient of variation.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 2 likes.