Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Higher-Order Asymptotics of Test-Time Adaptation for Batch Normalization Statistics (2505.16257v1)

Published 22 May 2025 in stat.ML and cs.LG

Abstract: This study develops a higher-order asymptotic framework for test-time adaptation (TTA) of Batch Normalization (BN) statistics under distribution shift by integrating classical Edgeworth expansion and saddlepoint approximation techniques with a novel one-step M-estimation perspective. By analyzing the statistical discrepancy between training and test distributions, we derive an Edgeworth expansion for the normalized difference in BN means and obtain an optimal weighting parameter that minimizes the mean-squared error of the adapted statistic. Reinterpreting BN TTA as a one-step M-estimator allows us to derive higher-order local asymptotic normality results, which incorporate skewness and other higher moments into the estimator's behavior. Moreover, we quantify the trade-offs among bias, variance, and skewness in the adaptation process and establish a corresponding generalization bound on the model risk. The refined saddlepoint approximations further deliver uniformly accurate density and tail probability estimates for the BN TTA statistic. These theoretical insights provide a comprehensive understanding of how higher-order corrections and robust one-step updating can enhance the reliability and performance of BN layers in adapting to changing data distributions.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube