Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 333 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Deep Gaussian Process-based Cost-Aware Batch Bayesian Optimization for Complex Materials Design Campaigns (2509.14408v1)

Published 17 Sep 2025 in cond-mat.mtrl-sci

Abstract: The accelerating pace and expanding scope of materials discovery demand optimization frameworks that efficiently navigate vast, nonlinear design spaces while judiciously allocating limited evaluation resources. We present a cost-aware, batch Bayesian optimization scheme powered by deep Gaussian process (DGP) surrogates and a heterotopic querying strategy. Our DGP surrogate, formed by stacking GP layers, models complex hierarchical relationships among high-dimensional compositional features and captures correlations across multiple target properties, propagating uncertainty through successive layers. We integrate evaluation cost into an upper-confidence-bound acquisition extension, which, together with heterotopic querying, proposes small batches of candidates in parallel, balancing exploration of under-characterized regions with exploitation of high-mean, low-variance predictions across correlated properties. Applied to refractory high-entropy alloys for high-temperature applications, our framework converges to optimal formulations in fewer iterations with cost-aware queries than conventional GP-based BO, highlighting the value of deep, uncertainty-aware, cost-sensitive strategies in materials campaigns.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.