Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

RLBind: Adversarial-Invariant Cross-Modal Alignment for Unified Robust Embeddings (2509.14383v1)

Published 17 Sep 2025 in cs.RO and cs.CV

Abstract: Unified multi-modal encoders that bind vision, audio, and other sensors into a shared embedding space are attractive building blocks for robot perception and decision-making. However, on-robot deployment exposes the vision branch to adversarial and natural corruptions, making robustness a prerequisite for safety. Prior defenses typically align clean and adversarial features within CLIP-style encoders and overlook broader cross-modal correspondence, yielding modest gains and often degrading zero-shot transfer. We introduce RLBind, a two-stage adversarial-invariant cross-modal alignment framework for robust unified embeddings. Stage 1 performs unsupervised fine-tuning on clean-adversarial pairs to harden the visual encoder. Stage 2 leverages cross-modal correspondence by minimizing the discrepancy between clean/adversarial features and a text anchor, while enforcing class-wise distributional alignment across modalities. Extensive experiments on Image, Audio, Thermal, and Video data show that RLBind consistently outperforms the LanguageBind backbone and standard fine-tuning baselines in both clean accuracy and norm-bounded adversarial robustness. By improving resilience without sacrificing generalization, RLBind provides a practical path toward safer multi-sensor perception stacks for embodied robots in navigation, manipulation, and other autonomy settings.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.