SCoGen: Scenario-Centric Graph-Based Synthesis of Real-World Code Problems (2509.14281v1)
Abstract: Significant advancements have been made in the capabilities of code LLMs, leading to their rapid adoption and application across a wide range of domains. However, their further advancements are often constrained by the scarcity of real-world coding problems. To bridge this gap, we propose a novel framework for synthesizing code problems that emulate authentic real-world scenarios. This framework systematically integrates domain knowledge, domain skills, and coding skills, all of which are meticulously extracted from real-world programming-related datasets, including Stack Overflow and Kaggle. The extracted elements serve as the foundational building blocks for constructing code problems. To align the generated problems with practical applications, application scenarios are also mined from the aforementioned datasets. These scenarios are then utilized to construct a scenario-centric graph that interconnects domain knowledge, domain skills, and coding skills. Based on this structured representation, a sampling strategy on the graph is designed, which effectively controls the generation of a code problem with complexity and diversity, reflects real-world challenges. Experimental results demonstrate that the proposed method consistently achieves superior performance over state-of-the-art open-source LLMs of varying sizes and functionalities, including both coders and general-purpose models, across a diverse set of real-world benchmarks.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.