Papers
Topics
Authors
Recent
2000 character limit reached

Automated and Context-Aware Code Documentation Leveraging Advanced LLMs (2509.14273v1)

Published 16 Sep 2025 in cs.SE

Abstract: Code documentation is essential to improve software maintainability and comprehension. The tedious nature of manual code documentation has led to much research on automated documentation generation. Existing automated approaches primarily focused on code summarization, leaving a gap in template-based documentation generation (e.g., Javadoc), particularly with publicly available LLMs. Furthermore, progress in this area has been hindered by the lack of a Javadoc-specific dataset that incorporates modern language features, provides broad framework/library coverage, and includes necessary contextual information. This study aims to address these gaps by developing a tailored dataset and assessing the capabilities of publicly available LLMs for context-aware, template-based Javadoc generation. In this work, we present a novel, context-aware dataset for Javadoc generation that includes critical structural and semantic information from modern Java codebases. We evaluate five open-source LLMs (including LLaMA-3.1, Gemma-2, Phi-3, Mistral, Qwen-2.5) using zero-shot, few-shot, and fine-tuned setups and provide a comparative analysis of their performance. Our results demonstrate that LLaMA 3.1 performs consistently well and is a reliable candidate for practical, automated Javadoc generation, offering a viable alternative to proprietary systems.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.