Papers
Topics
Authors
Recent
2000 character limit reached

SpeechWeave: Diverse Multilingual Synthetic Text & Audio Data Generation Pipeline for Training Text to Speech Models (2509.14270v1)

Published 15 Sep 2025 in cs.CL, cs.AI, cs.LG, cs.MM, cs.SD, and eess.AS

Abstract: High-quality Text-to-Speech (TTS) model training requires extensive and diverse text and speech data. It is challenging to procure such data from real sources due to issues of domain specificity, licensing, and scalability. LLMs can certainly generate textual data, but they create repetitive text with insufficient variation in the prompt during the generation process. Another important aspect in TTS training data is text normalization. Tools for normalization might occasionally introduce anomalies or overlook valuable patterns, and thus impact data quality. Furthermore, it is also impractical to rely on voice artists for large scale speech recording in commercial TTS systems with standardized voices. To address these challenges, we propose SpeechWeave, a synthetic speech data generation pipeline that is capable of automating the generation of multilingual, domain-specific datasets for training TTS models. Our experiments reveal that our pipeline generates data that is 10-48% more diverse than the baseline across various linguistic and phonetic metrics, along with speaker-standardized speech audio while generating approximately 97% correctly normalized text. Our approach enables scalable, high-quality data generation for TTS training, improving diversity, normalization, and voice consistency in the generated datasets.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 3 tweets with 2 likes about this paper.