Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 178 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

AI and the Future of Academic Peer Review (2509.14189v1)

Published 17 Sep 2025 in cs.CY

Abstract: Peer review remains the central quality-control mechanism of science, yet its ability to fulfill this role is increasingly strained. Empirical studies document serious shortcomings: long publication delays, escalating reviewer burden concentrated on a small minority of scholars, inconsistent quality and low inter-reviewer agreement, and systematic biases by gender, language, and institutional prestige. Decades of human-centered reforms have yielded only marginal improvements. Meanwhile, artificial intelligence, especially LLMs, is being piloted across the peer-review pipeline by journals, funders, and individual reviewers. Early studies suggest that AI assistance can produce reviews comparable in quality to humans, accelerate reviewer selection and feedback, and reduce certain biases, but also raise distinctive concerns about hallucination, confidentiality, gaming, novelty recognition, and loss of trust. In this paper, we map the aims and persistent failure modes of peer review to specific LLM applications and systematically analyze the objections they raise alongside safeguards that could make their use acceptable. Drawing on emerging evidence, we show that targeted, supervised LLM assistance can plausibly improve error detection, timeliness, and reviewer workload without displacing human judgment. We highlight advanced architectures, including fine-tuned, retrieval-augmented, and multi-agent systems, that may enable more reliable, auditable, and interdisciplinary review. We argue that ethical and practical considerations are not peripheral but constitutive: the legitimacy of AI-assisted peer review depends on governance choices as much as technical capacity. The path forward is neither uncritical adoption nor reflexive rejection, but carefully scoped pilots with explicit evaluation metrics, transparency, and accountability.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com

alphaXiv