Papers
Topics
Authors
Recent
2000 character limit reached

Performance Optimization of YOLO-FEDER FusionNet for Robust Drone Detection in Visually Complex Environments (2509.14012v1)

Published 17 Sep 2025 in cs.CV

Abstract: Drone detection in visually complex environments remains challenging due to background clutter, small object scale, and camouflage effects. While generic object detectors like YOLO exhibit strong performance in low-texture scenes, their effectiveness degrades in cluttered environments with low object-background separability. To address these limitations, this work presents an enhanced iteration of YOLO-FEDER FusionNet -- a detection framework that integrates generic object detection with camouflage object detection techniques. Building upon the original architecture, the proposed iteration introduces systematic advancements in training data composition, feature fusion strategies, and backbone design. Specifically, the training process leverages large-scale, photo-realistic synthetic data, complemented by a small set of real-world samples, to enhance robustness under visually complex conditions. The contribution of intermediate multi-scale FEDER features is systematically evaluated, and detection performance is comprehensively benchmarked across multiple YOLO-based backbone configurations. Empirical results indicate that integrating intermediate FEDER features, in combination with backbone upgrades, contributes to notable performance improvements. In the most promising configuration -- YOLO-FEDER FusionNet with a YOLOv8l backbone and FEDER features derived from the DWD module -- these enhancements lead to a FNR reduction of up to 39.1 percentage points and a mAP increase of up to 62.8 percentage points at an IoU threshold of 0.5, compared to the initial baseline.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.