Papers
Topics
Authors
Recent
2000 character limit reached

MOCHA: Multi-modal Objects-aware Cross-arcHitecture Alignment (2509.14001v1)

Published 17 Sep 2025 in cs.CV, cs.AI, and cs.LG

Abstract: We introduce MOCHA (Multi-modal Objects-aware Cross-arcHitecture Alignment), a knowledge distillation approach that transfers region-level multimodal semantics from a large vision-language teacher (e.g., LLaVa) into a lightweight vision-only object detector student (e.g., YOLO). A translation module maps student features into a joint space, where the training of the student and translator is guided by a dual-objective loss that enforces both local alignment and global relational consistency. Unlike prior approaches focused on dense or global alignment, MOCHA operates at the object level, enabling efficient transfer of semantics without modifying the teacher or requiring textual input at inference. We validate our method across four personalized detection benchmarks under few-shot regimes. Results show consistent gains over baselines, with a +10.1 average score improvement. Despite its compact architecture, MOCHA reaches performance on par with larger multimodal models, proving its suitability for real-world deployment.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.