Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 415 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Synthetic Data Generation for Screen Time and App Usage (2509.13892v1)

Published 17 Sep 2025 in cs.HC and cs.AI

Abstract: Smartphone usage data can provide valuable insights for understanding interaction with technology and human behavior. However, collecting large-scale, in-the-wild smartphone usage logs is challenging due to high costs, privacy concerns, under representative user samples and biases like non-response that can skew results. These challenges call for exploring alternative approaches to obtain smartphone usage datasets. In this context, LLMs such as Open AI's ChatGPT present a novel approach for synthetic smartphone usage data generation, addressing limitations of real-world data collection. We describe a case study on how four prompt strategies influenced the quality of generated smartphone usage data. We contribute with insights on prompt design and measures of data quality, reporting a prompting strategy comparison combining two factors, prompt level of detail (describing a user persona, describing the expected results characteristics) and seed data inclusion (with versus without an initial real usage example). Our findings suggest that using LLMs to generate structured and behaviorally plausible smartphone use datasets is feasible for some use cases, especially when using detailed prompts. Challenges remain in capturing diverse nuances of human behavioral patterns in a single synthetic dataset, and evaluating tradeoffs between data fidelity and diversity, suggesting the need for use-case-specific evaluation metrics and future research with more diverse seed data and different LLM models.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.