Imputation-Powered Inference (2509.13778v1)
Abstract: Modern multi-modal and multi-site data frequently suffer from blockwise missingness, where subsets of features are missing for groups of individuals, creating complex patterns that challenge standard inference methods. Existing approaches have critical limitations: complete-case analysis discards informative data and is potentially biased; doubly robust estimators for non-monotone missingness-where the missingness patterns are not nested subsets of one another-can be theoretically efficient but lack closed-form solutions and often fail to scale; and blackbox imputation can leverage partially observed data to improve efficiency but provides no inferential guarantees when misspecified. To address the limitations of these existing methods, we propose imputation-powered inference (IPI), a model-lean framework that combines the flexibility of blackbox imputation with bias correction using fully observed data, drawing on ideas from prediction-powered inference and semiparametric inference. IPI enables valid and efficient M-estimation under missing completely at random (MCAR) blockwise missingness and improves subpopulation inference under a weaker assumption we formalize as first-moment MCAR, for which we also provide practical diagnostics. Simulation studies and a clinical application demonstrate that IPI may substantially improve subpopulation efficiency relative to complete-case analysis, while maintaining statistical validity in settings where both doubly robust estimators and naive imputation fail to achieve nominal coverage.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.