Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Efficient surrogate-assisted inference for patient-reported outcome measures with complex missing mechanism (2210.09362v2)

Published 17 Oct 2022 in stat.ME, math.ST, and stat.TH

Abstract: Patient-reported outcome (PRO) measures are increasingly collected as a means of measuring healthcare quality and value. The capability to predict such measures enables patient-provider shared decision making and the delivery of patient-centered care. However, due to their voluntary nature, PRO measures often suffer from a high missing rate, and the missingness may depend on many patient factors. Under such a complex missing mechanism, statistical inference of the parameters in prediction models for PRO measures is challenging, especially when flexible imputation models such as machine learning or nonparametric methods are used. Specifically, the slow convergence rate of the flexible imputation model may lead to non-negligible bias, and the traditional missing propensity, capable of removing such a bias, is hard to estimate due to the complex missing mechanism. To efficiently infer the parameters of interest, we propose to use an informative surrogate that can lead to a flexible imputation model lying in a low-dimensional subspace. To remove the bias due to the flexible imputation model, we identify a class of weighting functions as alternatives to the traditional propensity score and estimate the low-dimensional one within the identified function class. Based on the estimated low-dimensional weighting function, we construct a one-step debiased estimator without using any information of the true missing propensity. We establish the asymptotic normality of the one-step debiased estimator. Simulation and an application to real-world data demonstrate the superiority of the proposed method.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube