Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

VocSegMRI: Multimodal Learning for Precise Vocal Tract Segmentation in Real-time MRI (2509.13767v1)

Published 17 Sep 2025 in cs.CV

Abstract: Accurately segmenting articulatory structures in real-time magnetic resonance imaging (rtMRI) remains challenging, as most existing methods rely almost entirely on visual cues. Yet synchronized acoustic and phonological signals provide complementary context that can enrich visual information and improve precision. In this paper, we introduce VocSegMRI, a multimodal framework that integrates video, audio, and phonological inputs through cross-attention fusion for dynamic feature alignment. To further enhance cross-modal representation, we incorporate a contrastive learning objective that improves segmentation performance even when the audio modality is unavailable at inference. Evaluated on a sub-set of USC-75 rtMRI dataset, our approach achieves state-of-the-art performance, with a Dice score of 0.95 and a 95th percentile Hausdorff Distance (HD_95) of 4.20 mm, outperforming both unimodal and multimodal baselines. Ablation studies confirm the contributions of cross-attention and contrastive learning to segmentation precision and robustness. These results highlight the value of integrative multimodal modeling for accurate vocal tract analysis.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube