Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Silent Speech and Emotion Recognition from Vocal Tract Shape Dynamics in Real-Time MRI (2106.08706v1)

Published 16 Jun 2021 in eess.IV, cs.CV, cs.HC, cs.LG, cs.SD, and eess.AS

Abstract: Speech sounds of spoken language are obtained by varying configuration of the articulators surrounding the vocal tract. They contain abundant information that can be utilized to better understand the underlying mechanism of human speech production. We propose a novel deep neural network-based learning framework that understands acoustic information in the variable-length sequence of vocal tract shaping during speech production, captured by real-time magnetic resonance imaging (rtMRI), and translate it into text. The proposed framework comprises of spatiotemporal convolutions, a recurrent network, and the connectionist temporal classification loss, trained entirely end-to-end. On the USC-TIMIT corpus, the model achieved a 40.6% PER at sentence-level, much better compared to the existing models. To the best of our knowledge, this is the first study that demonstrates the recognition of entire spoken sentence based on an individual's articulatory motions captured by rtMRI video. We also performed an analysis of variations in the geometry of articulation in each sub-regions of the vocal tract (i.e., pharyngeal, velar and dorsal, hard palate, labial constriction region) with respect to different emotions and genders. Results suggest that each sub-regions distortion is affected by both emotion and gender.

Citations (8)

Summary

We haven't generated a summary for this paper yet.