Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 34 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Mitigating Query Selection Bias in Referring Video Object Segmentation (2509.13722v1)

Published 17 Sep 2025 in cs.CV and cs.AI

Abstract: Recently, query-based methods have achieved remarkable performance in Referring Video Object Segmentation (RVOS) by using textual static object queries to drive cross-modal alignment. However, these static queries are easily misled by distractors with similar appearance or motion, resulting in \emph{query selection bias}. To address this issue, we propose Triple Query Former (TQF), which factorizes the referring query into three specialized components: an appearance query for static attributes, an intra-frame interaction query for spatial relations, and an inter-frame motion query for temporal association. Instead of relying solely on textual embeddings, our queries are dynamically constructed by integrating both linguistic cues and visual guidance. Furthermore, we introduce two motion-aware aggregation modules that enhance object token representations: Intra-frame Interaction Aggregation incorporates position-aware interactions among objects within a single frame, while Inter-frame Motion Aggregation leverages trajectory-guided alignment across frames to ensure temporal coherence. Extensive experiments on multiple RVOS benchmarks demonstrate the advantages of TQF and the effectiveness of our structured query design and motion-aware aggregation modules.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.