Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Automated Triaging and Transfer Learning of Incident Learning Safety Reports Using Large Language Representational Models (2509.13706v1)

Published 17 Sep 2025 in cs.CL and cs.AI

Abstract: PURPOSE: Incident reports are an important tool for safety and quality improvement in healthcare, but manual review is time-consuming and requires subject matter expertise. Here we present a NLP screening tool to detect high-severity incident reports in radiation oncology across two institutions. METHODS AND MATERIALS: We used two text datasets to train and evaluate our NLP models: 7,094 reports from our institution (Inst.), and 571 from IAEA SAFRON (SF), all of which had severity scores labeled by clinical content experts. We trained and evaluated two types of models: baseline support vector machines (SVM) and BlueBERT which is a LLM pretrained on PubMed abstracts and hospitalized patient data. We assessed for generalizability of our model in two ways. First, we evaluated models trained using Inst.-train on SF-test. Second, we trained a BlueBERT_TRANSFER model that was first fine-tuned on Inst.-train then on SF-train before testing on SF-test set. To further analyze model performance, we also examined a subset of 59 reports from our Inst. dataset, which were manually edited for clarity. RESULTS Classification performance on the Inst. test achieved AUROC 0.82 using SVM and 0.81 using BlueBERT. Without cross-institution transfer learning, performance on the SF test was limited to an AUROC of 0.42 using SVM and 0.56 using BlueBERT. BlueBERT_TRANSFER, which was fine-tuned on both datasets, improved the performance on SF test to AUROC 0.78. Performance of SVM, and BlueBERT_TRANSFER models on the manually curated Inst. reports (AUROC 0.85 and 0.74) was similar to human performance (AUROC 0.81). CONCLUSION: In summary, we successfully developed cross-institution NLP models on incident report text from radiation oncology centers. These models were able to detect high-severity reports similarly to humans on a curated dataset.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.