Papers
Topics
Authors
Recent
2000 character limit reached

Object Pose Estimation through Dexterous Touch (2509.13591v1)

Published 16 Sep 2025 in cs.RO and cs.CV

Abstract: Robust object pose estimation is essential for manipulation and interaction tasks in robotics, particularly in scenarios where visual data is limited or sensitive to lighting, occlusions, and appearances. Tactile sensors often offer limited and local contact information, making it challenging to reconstruct the pose from partial data. Our approach uses sensorimotor exploration to actively control a robot hand to interact with the object. We train with Reinforcement Learning (RL) to explore and collect tactile data. The collected 3D point clouds are used to iteratively refine the object's shape and pose. In our setup, one hand holds the object steady while the other performs active exploration. We show that our method can actively explore an object's surface to identify critical pose features without prior knowledge of the object's geometry. Supplementary material and more demonstrations will be provided at https://amirshahid.github.io/BimanualTactilePose .

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 2 likes about this paper.

alphaXiv

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube