Papers
Topics
Authors
Recent
2000 character limit reached

Explicit Reasoning Makes Better Judges: A Systematic Study on Accuracy, Efficiency, and Robustness (2509.13332v1)

Published 9 Sep 2025 in cs.AI and cs.CL

Abstract: As LLMs are increasingly adopted as automated judges in benchmarking and reward modeling, ensuring their reliability, efficiency, and robustness has become critical. In this work, we present a systematic comparison of "thinking" and "non-thinking" LLMs in the LLM-as-a-judge paradigm using open-source Qwen 3 models of relatively small sizes (0.6B, 1.7B, and 4B parameters). We evaluate both accuracy and computational efficiency (FLOPs) on RewardBench tasks, and further examine augmentation strategies for non-thinking models, including in-context learning, rubric-guided judging, reference-based evaluation, and n-best aggregation. Our results show that despite these enhancements, non-thinking models generally fall short of their thinking counterparts. Our results show that thinking models achieve approximately 10% points higher accuracy with little overhead (under 2x), in contrast to augmentation strategies like few-shot learning, which deliver modest gains at a higher cost (>8x). Bias and robustness analyses further demonstrate that thinking models maintain significantly greater consistency under a variety of bias conditions such as positional, bandwagon, identity, diversity, and random biases (6% higher on average). We further extend our experiments to the multilingual setting and our results confirm that explicit reasoning extends its benefits beyond English. Overall, our work results in several important findings that provide systematic evidence that explicit reasoning offers clear advantages in the LLM-as-a-judge paradigm not only in accuracy and efficiency but also in robustness.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 2 tweets with 0 likes about this paper.