Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 49 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Gaussian Mixture Model with unknown diagonal covariances via continuous sparse regularization (2509.12889v1)

Published 16 Sep 2025 in math.ST, stat.ML, and stat.TH

Abstract: This paper addresses the statistical estimation of Gaussian Mixture Models (GMMs) with unknown diagonal covariances from independent and identically distributed samples. We employ the Beurling-LASSO (BLASSO), a convex optimization framework that promotes sparsity in the space of measures, to simultaneously estimate the number of components and their parameters. Our main contribution extends the BLASSO methodology to multivariate GMMs with component-specific unknown diagonal covariance matrices-a significantly more flexible setting than previous approaches requiring known and identical covariances. We establish non-asymptotic recovery guarantees with nearly parametric convergence rates for component means, diagonal covariances, and weights, as well as for density prediction. A key theoretical contribution is the identification of an explicit separation condition on mixture components that enables the construction of non-degenerate dual certificates-essential tools for establishing statistical guarantees for the BLASSO. Our analysis leverages the Fisher-Rao geometry of the statistical model and introduces a novel semi-distance adapted to our framework, providing new insights into the interplay between component separation, parameter space geometry, and achievable statistical recovery.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 5 likes.