Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Modeling nonstationary spatial processes with normalizing flows (2509.12884v1)

Published 16 Sep 2025 in stat.ME and stat.ML

Abstract: Nonstationary spatial processes can often be represented as stationary processes on a warped spatial domain. Selecting an appropriate spatial warping function for a given application is often difficult and, as a result of this, warping methods have largely been limited to two-dimensional spatial domains. In this paper, we introduce a novel approach to modeling nonstationary, anisotropic spatial processes using neural autoregressive flows (NAFs), a class of invertible mappings capable of generating complex, high-dimensional warpings. Through simulation studies we demonstrate that a NAF-based model has greater representational capacity than other commonly used spatial process models. We apply our proposed modeling framework to a subset of the 3D Argo Floats dataset, highlighting the utility of our framework in real-world applications.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 2 likes.